24 research outputs found

    Numerical approximation of the generalized regularized long wave equation using Petrov–Galerkin finite element method

    Get PDF
    The generalized regularized long wave (GRLW) equation has been developed to model a variety of physical phenomena such as ion-acoustic and magnetohydro dynamic waves in plasma,nonlinear transverse waves in shallow water and phonon packets in nonlinear crystals. This paper aims to develop andanalyze a powerful numerical scheme for the nonlinear GRLWequation by Petrov–Galerkin method in which the elementshape functions are cubic and weight functions are quadratic B-splines. The proposed method is implemented to three ref-erence problems involving propagation of the single solitarywave, interaction of two solitary waves and evolution of solitons with the Maxwellian initial condition. The variational for-mulation and semi-discrete Galerkin scheme of the equation are firstly constituted. We estimate rate of convergence of such an approximation. Using Fourier stability analysis of thelinearized scheme we show that the scheme is uncondition-ally stable. To verify practicality and robustness of the new scheme error norms L2, L∞ and three invariants I1, I2,and I3 are calculated. The computed numerical results are compared with other published results and confirmed to be precise and effective

    Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands

    Get PDF
    Plant–plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant–plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of – and interrelationships among – these factors as drivers of plant–plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modelling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant–plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant–plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant–plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant–plant interactions at broader spatial scales. In our global-scale study on drylands, plant–plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: (1) positive plant–plant interactions are more likely to occur for taller facilitated species in drylands, and (2) plant–plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants

    Surface indicators are correlated with soil multifunctionality in global drylands

    Get PDF
    Multiple ecosystem functions need to be considered simultaneously to manage and protect the several ecosystem services that are essential to people and their environments. Despite this, cost effective, tangible, relatively simple and globally relevant methodologies to monitor in situ soil multifunctionality, that is, the provision of multiple ecosystem functions by soils, have not been tested at the global scale. We combined correlation analysis and structural equation modelling to explore whether we could find easily measured, field-based indicators of soil multifunctionality (measured using functions linked to the cycling and storage of soil carbon, nitrogen and phosphorus). To do this, we gathered soil data from 120 dryland ecosystems from five continents. Two soil surface attributes measured in situ (litter incorporation and surface aggregate stability) were the most strongly associated with soil multifunctionality, even after accounting for geographic location and other drivers such as climate, woody cover, soil pH and soil electric conductivity. The positive relationships between surface stability and litter incorporation on soil multifunctionality were greater beneath the canopy of perennial vegetation than in adjacent, open areas devoid of vascular plants. The positive associations between surface aggregate stability and soil functions increased with increasing mean annual temperature. Synthesis and applications. Our findings demonstrate that a reduced suite of easily measured in situ soil surface attributes can be used as potential indicators of soil multifunctionality in drylands world-wide. These attributes, which relate to plant litter (origin, incorporation, cover), and surface stability, are relatively cheap and easy to assess with minimal training, allowing operators to sample many sites across widely varying climatic areas and soil types. The correlations of these variables are comparable to the influence of climate or soil, and would allow cost-effective monitoring of soil multifunctionality under changing land-use and environmental conditions. This would provide important information for evaluating the ecological impacts of land degradation, desertification and climate change in drylands world-wide.Fil: Eldridge, David J.. University of New South Wales; AustraliaFil: Delgado Baquerizo, Manuel. Universidad Rey Juan Carlos; EspañaFil: Quero, JosĂ© L.. Universidad de CĂłrdoba; EspañaFil: Ochoa, Victoria. Universidad Rey Juan Carlos; España. Universidad de Alicante; EspañaFil: Gozalo, Beatriz. Universidad Rey Juan Carlos; España. Universidad de Alicante; EspañaFil: GarcĂ­a Palacios, Pablo. Universidad Rey Juan Carlos; EspañaFil: Escolar, Cristina. Universidad Rey Juan Carlos; EspañaFil: GarcĂ­a GĂłmez, Miguel. Universidad PolitĂ©cnica de Madrid; EspañaFil: Prina, AnĂ­bal. Universidad Nacional de La Pampa; ArgentinaFil: Bowker, Mathew A.. Northern Arizona University; Estados UnidosFil: Bran, Donaldo Eduardo. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro Regional Patagonia Norte. EstaciĂłn Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Castro, Ignacio. Universidad Experimental SimĂłn RodrĂ­guez; VenezuelaFil: Cea, Alex. Universidad de La Serena; ChileFil: Derak, Mchich. No especifĂ­ca;Fil: Espinosa, Carlos I.. Universidad TĂ©cnica Particular de Loja; EcuadorFil: Florentino, Adriana. Universidad Central de Venezuela; VenezuelaFil: GaitĂĄn, Juan JosĂ©. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro de InvestigaciĂłn de Recursos Naturales. Instituto de Suelos; Argentina. Universidad Nacional de LujĂĄn. Departamento de TecnologĂ­a; ArgentinaFil: Gatica, Mario Gabriel. Universidad Nacional de San Juan. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Departamento de BiologĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: GĂłmez GonzĂĄlez, Susana. Universidad de CĂĄdiz; EspañaFil: Ghiloufi, Wahida. UniversitĂ© de Sfax; TĂșnezFil: Gutierrez, Julio R.. Universidad de La Serena; ChileFil: Guzman, Elizabeth. Universidad TĂ©cnica Particular de Loja; EcuadorFil: HernĂĄndez, Rosa M.. Universidad Experimental SimĂłn RodrĂ­guez; VenezuelaFil: Hughes, Frederic M.. Universidade Estadual de Feira de Santana; BrasilFil: Muiño, Walter. Universidad Nacional de La Pampa; ArgentinaFil: Monerris, Jorge. No especifĂ­ca;Fil: Ospina, Abelardo. Universidad Central de Venezuela; VenezuelaFil: RamĂ­rez, David A.. International Potato Centre; PerĂșFil: Ribas Fernandez, Yanina Antonia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: RomĂŁo, Roberto L.. Universidade Estadual de Feira de Santana; BrasilFil: Torres DĂ­az, Cristian. Universidad del Bio Bio; ChileFil: Koen, Terrance B.. No especifĂ­ca;Fil: Maestre, Fernando T.. Universidad Rey Juan Carlos; España. Universidad de Alicante; Españ

    Surface indicators are correlated with soil multifunctionality in global drylands

    Get PDF
    1. Multiple ecosystem functions need to be considered simultaneously to manage and protect the several ecosystem services that are essential to people and their environments. Despite this, cost effective, tangible, relatively simple and globally relevant methodologies to monitor in situ soil multifunctionality, that is, the provision of multiple ecosystem functions by soils, have not been tested at the global scale. 2. We combined correlation analysis and structural equation modelling to explore whether we could find easily measured, field‐based indicators of soil multifunctionality (measured using functions linked to the cycling and storage of soil carbon, nitrogen and phosphorus). To do this, we gathered soil data from 120 dryland ecosystems from five continents. 3. Two soil surface attributes measured in situ (litter incorporation and surface aggregate stability) were the most strongly associated with soil multifunctionality, even after accounting for geographic location and other drivers such as climate, woody cover, soil pH and soil electric conductivity. The positive relationships between surface stability and litter incorporation on soil multifunctionality were greater beneath the canopy of perennial vegetation than in adjacent, open areas devoid of vascular plants. The positive associations between surface aggregate stability and soil functions increased with increasing mean annual temperature. 4. Synthesis and applications. Our findings demonstrate that a reduced suite of easily measured in situ soil surface attributes can be used as potential indicators of soil multifunctionality in drylands world‐wide. These attributes, which relate to plant litter (origin, incorporation, cover), and surface stability, are relatively cheap and easy to assess with minimal training, allowing operators to sample many sites across widely varying climatic areas and soil types. The correlations of these variables are comparable to the influence of climate or soil, and would allow cost‐effective monitoring of soil multifunctionality under changing land‐use and environmental conditions. This would provide important information for evaluating the ecological impacts of land degradation, desertification and climate change in drylands world‐wide.This work was funded by the European Research Council ERC Grant agreement 242658 (BIOCOM). CYTED funded networking activities (EPES, Acción 407AC0323). D.J.E. acknowledges support from the Australian Research Council (DP150104199) and F.T.M. support from the European Research Council (BIODESERT project, ERC Grant agreement no 647038), from the Spanish Ministerio de Economía y Competitividad (BIOMOD project, ref. CGL2013-44661-R) and from a Humboldt Research Award from the Alexander von Humboldt Foundation. M.D.-B. was supported by REA grant agreement no 702057 from the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Programme H2020-MSCA-IF-2016), J.R.G. acknowledges support from CONICYT/FONDECYT no 1160026

    Plasma Technology for Phosphogypsum Treatment

    No full text
    The phosphate industry generates a large amount of waste called phosphogypsum (PG). Generally, this waste is discharged without any treatment, and it causes considerable environmental problems. Hence, the objective of this study is the treatment of phosphate waste using thermal plasma technology. First, the waste is characterized using different techniques, such as X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma (ICP). Such characterization shows that the waste contains different toxic elements, such as heavy metals, fluorine, chlorine, sulfur, and phosphorus. For this reason, a plasma reactor is used to separate toxic elements from metals, such as silicon, aluminum, and magnesium, with a pyrolysis/combustion plasma system. In this work, the influence of different parameters, such as time of treatment and plasma current, on the volatility of toxic elements is studied. The obtained results show that after 40 min of treatment and at a plasma current of 160 A, the phosphogypsum completely melts, and the most toxic elements, namely Pb, Cd, V, Cr, and As, are completely vaporized

    Modelling of a Non-Transferred Plasma Torch Used for Nano-Silica Powders Production

    No full text
    In this study, a two-dimensional numerical model was developed to simulate operation conditions in the non-transferred plasma torch, used to synthesis nanosilica powder. The turbulent magnetohydrodynamic model was presented to predict the nitrogen plasma flow and heat transfer characteristics inside and outside the plasma torch. The continuity, momentum, energy, current continuity equations, and the turbulence model were expressed in cylindrical coordinates and numerically solved by COMSOL Multiphysics software with a finite element method. The operation conditions of the mass flow rate of ionized gas ranging from 78 sccm to 240 sccm and the current varying between 50 A to 200 A were systematically analyzed. The variation in the electrothermal efficiency with the gas flow rate, the plasma current, and the enthalpy was also reported. The results revealed that the increase in working current lead to a raise in the effective electric power and then an increase in the distribution of plasma velocity and temperature. The efficiency of the torch was found to be between 36% and 75%. The plasma jet exited the nozzle torch with a larger fast and hot core diameter with increasing current. The numerical results showed good correlation and good trends with the experimental measurement. This study allowed us to obtain more efficient control of the process conditions and a better optimization of this process in terms of the production rate and primary particle size. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the primary nanosilica powder that was experimentally collected. The arc plasma method enabled us to produce a spherical silicon ultra-fine powder of about 20 nm in diameter
    corecore